Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper considers path planning with resource constraints and dynamic obstacles for an unmanned aerial vehicle (UAV), modeled as a Dubins agent. Incorporating these complex constraints at the guidance stage expands the scope of operations of UAVs in challenging environments containing path-dependent integral constraints and time-varying obstacles. Path-dependent integral constraints, also known as resource constraints, can occur when the UAV is subject to a hazardous environment that exposes it to cumulative damage over its traversed path. The noise penalty function was selected as the resource constraint for this study, which was modeled as a path integral that exerts a path-dependent load on the UAV, stipulated to not exceed an upper bound. Weather phenomena such as storms, turbulence and ice are modeled as dynamic obstacles. In this paper, ice data from the Aviation Weather Service is employed to create training data sets for learning the dynamics of ice phenomena. Dynamic mode decomposition (DMD) is used to learn and forecast the evolution of ice conditions at flight level. This approach is presented as a computationally scalable means of propagating obstacle dynamics. The reduced order DMD representation of time-varying ice obstacles is integrated with a recently developed backtracking hybridA∗ graph search algorithm. The backtracking mechanism allows us to determine a feasible path in a computationally scalable manner in the presence of resource constraints. Illustrative numerical results are presented to demonstrate the effectiveness of the proposed path-planning method.more » « less
-
This paper considers resource constrained path planning for a Dubins agent. Resource constraints are modeled as path integrals that exert a path-dependent load on the agent that must not exceed an upper bound. A backtracking mechanism is proposed for the Hybrid-A* graph search algorithm to determine the minimum time path in the presence of the path loading constraint. The new approach is built on the premise that inadmissibility of a node on the graph must depend on the loading accumulated along the path taken to arrive at its location. Conventional hybrid-A* does not account for this fact, causing it to become suboptimal or even infeasible in the presence of resource constraints. The new approach helps "reset'' the graph search by backing away from a node when the loading constraint is exceeded, and redirecting the search to explore alternate routes to arrive at the same location, while keeping the path load under its stipulated threshold. Backtracking Stopping criterion is based on relaxation of the path load along the search path. Case studies are presented and numerical comparisons are made with the Lagrange relaxation method to solving equivalent resource-constrained shortest path problems.more » « less
An official website of the United States government
